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LE’ITER TO THE EDITOR 

Concentration gradient approach to continuum percolation in 
two dimensions 

M Rosso 
Laboratoire de Physique de la Matibre CondensCet, Ecole Polytechnique, 91 128, Palaiseau, 
France 

Received 13 October 1988 

Abstract. We have investigated percolation properties of a system of overlapping discs 
randomly distributed with a gradient of concentration. Fractal properties and critical 
exponents of this system appear to be identical to their counterparts on a lattice. This is 
in agreement with the universality of critical exponents of percolation. The concentration 
gradient approach permits a precise calculation of the percolation threshold, corresponding 
to a critical area fraction of 0.6766 * 0.0005. We have investigated the part of the external 
perimeter of the percolation cluster which is accessible to discs of various sizes. The fractal 
dimension of this ‘accessible’ perimeter is found to decrease abruptly as a function of the 
radius of invading discs, from 1.75k0.02 to 1.35 *0.02. 

Percolation in a gradient of concentration in ZD and 3~ lattices has provided a new 
insight into the usual percolation problem and a precise determination of percolation 
parameters [l-31. Gradient percolation has also been shown to provide a useful 
approach to different physical problems where concentration gradients are present, 
such as diffusion fronts or invasion of porous media under gravity [4-61. Obviously, 
generalisation to the continuum is an important consideration. 

Several authors have verified that percolation on a continuum belongs to the same 
universality class as usual percolation on a lattice [7-91. A first goal of this study is 
to confirm this universality in the case of a gradient, allowing applicability of the 
gradient percolation approach to a wide class of experimental situations. Besides, a 
very accurate calculation of percolation parameters is possible, as in the case of lattice 
percolation. 

We also investigate a question recently addressed by Grossman and Aharony 
[ 10,111, concerning the fractal dimension of the ‘accessible’ perimeter of the percolating 
cluster. Looking for sites of the percolating cluster, accessible for particles with different 
sizes coming from the ‘outside’ (or infinity), Grossman and Aharony found that they 
constitute subsets of the hull with dimension Dh, decreasing from 1.75 to 1.35 when 
the particle size increases. Aharony [12], and Saleur and Duplantier [13] have recently 
predicted that the dimension should in fact vary as a step function of the particle 
size-as soon as some apertures in the hull are closed the dimension is reduced to the 
constant value 1.33. Recent simulations [ 141 support this prediction. However, on a 
lattice one can only investigate a discrete set of particle sizes. The present study of 
this problem in the continuum permits us to consider particles with size ranging 
continuously from zero to infinity. 

t Laboratoire de Physique de la Matibre CondensCe is ‘Unit6 de Recherche No 1254 associCe au Centre 
National de la Recherche Scientifique’. 
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Gradient percolation on a lattice is very simply derived from the usual percolation 
problem [ 1,4]. One considers a lattice where the concentration p of occupied sites 
may vary in a range p o < p  < p t .  If the percolation threshold p c  for this lattice lies 
within this range, one finds an 'infinite' or percolating cluster, which extends in the 
whole region p c  < p  < p 1 .  We have shown that, for two-dimensional ( 2 ~ )  lattice systems 
[4], the front or external perimeter of this cluster is a fractal object [15], similar to the 
hull of the usual percolating cluster [16]. This front is situated in the region where 
the concentration of the diffusing particles is very close to p c .  It is restricted to a 
concentration region with a spatial width uf depending on the local concentration 
gradient V p  as 

(+fa lVpl ( 1 )  

C Y ,  = v / ( l +  v) (2) 

where 

with v being the critical exponent for the 2~ percolation coherence length (v=$). 
Because the front is fractal the number of particles Nf in the front varies with uf as 

where Df is the fractal dimension of the front, and L measures the spatial extent of 
the front perpendicular to the concentration gradient ( L  >> uf). Hence Nf is also a 
power-law function of the gradient 

with 

Nfa  LaPC-' (3) 

Nfa JVpJ-'+ (4) 

CYN =(Df-l)au. ( 5 )  
The fractal dimension Df is thought to be given by Df = ( Y + 1)/  v = in 2~ systems 

[13,17], a conjecture originally based on the observation that aN +a, = 1 [4]. 
Generalisation to the continuum is straightforward. We consider a random distribu- 

tion of overlapping discs, with radius Ro= 1 in a rectangular box with dimensions 
L x L' and a constant gradient of concentration along the x direction, corresponding 
to side L'. This distribution is such that the concentration p is maximum for x = 0 
and p = 0 for x = L'. The maximum value for p is taken equal to 2.25/rrRi, approxi- 
mately equal to 2 p c  where pc is the percolation threshold. In consequence, in the 
high-concentration region almost all discs belong to the 'infinite cluster' whose 
extension is obviously limited in the low-concentration region. The determination of 
the external boundary of the infinite cluster is as follows (see figure 1 ) .  We start from 
the disc belonging to the infinite cluster such that the concentration at the position of 
the disc is minimum (this is the hatched disc in figure 1)-this disc obviously belongs 
to the front. Then, the next disc on the front (shown with dotted shading in figure 1)  
is that which first intersects the origin disc in a given direction (clockwise in this case). 
The front is constructed, step by step, following the same rule, with periodic boundary 
conditions in the direction perpendicular to the concentration gradient. 

Simulations are systematically performed for a series of samples with decreasing 
concentration gradients V p  a ROIL'. As for the lattice case, we calculate N f  and uf, 
from which we can deduce the exponents C Y ,  and aN and the dimension D f ,  from ( l ) ,  
(3) and (4), respectively. Variations of N f  and uf with gradient V p  give aN = 0.42 and 
CY, = 0.56 (see figure 2). The fractal dimension of the front is found to be Df = 1.75 f 0.02. 
All these numbers are very close to their counterparts in the lattice problem [4], 
confirming the universality of these exponents. 
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Figure 1. Schematic illustration of the determination of the front (shown as shaded discs; 
see text for explanation). 
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Figure 2. Variation of the number Nf of points of the front per unit length (m) and of the 
width of (e) with the inverse gradient Vp-' cc L'/ R o .  

Gradient percolation was shown to enable a very accurate determination of p ,  in 
the lattice percolation problem [ 1,2]. This determination is based on the observation 
that the front tends asymptotically to p c  when the gradient Vp tends to zero. This may 
be generalised to the continuum percolation problem. In this case, the percolation 
threshold may be determined for different quantities, such as critical area fraction aC, 
critical concentration pcf or critical coordination number B,. All these quantities may 
be simply deduced from one another [9,18]. Basically, the critical value of a parameter 
is its value at the average position (xf) of the front: (xf) = (Xi x , ) / N , ,  the sum being 
over all discs belonging to the front. We also consider the quantity (xfr) = (Xi  xi/pi)/  Nf, 
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where p ,  is the concentration at abscissa x,. In the lattice case, Gouyet et a1 [ 191 have 
shown that p((xf)) and p((xfr)) converge to p c ,  the percolation threshold, according to 

P(+f)) -PcaIVpl ( 6 a )  

p((xf)) -p((xfr))a I v P I ~ ' ~ .  ( 6 6 )  
Figures 3 ( a )  and 3 ( 6 )  show that ( 6 a )  and ( 6 6 )  are well verified, for a series of 

samples with Ro/L' ranging from & to &, and total numbers of discs on the front 
being approximately equal to lo5 for each gradient. Extrapolation of these data to 
zero gradient gives B, = 4.515 * 0.006, corresponding to @, = 0.6766 f 0.0005. This is 
in agreement with, although more precise than, a previous determination by Gawlinski 
and Stanley [ 9 ] .  

In addition, when the front is defined we investigate its accessible part (Grossman- 
Aharony behaviour [IO]) with the following method. Each disc on the front has its 
radius increased by a factor R /  Ro (in the present calculation, R /  Ro is increased from 

4.7 

4.41 
-* 0 0.01 0.02 0.03 0.04 0.05 0.06 

Ro If' 

( R, / L ' )  6'7 

Figure 3. ( a )  Variation of the average coordination number B per disc, at the location of 
the front (xfJ as a function of the concentration gradient V p  a R,/ L'. A linear variation 
is observed, from which we deduce Bc=4.515. ( b )  Scaling behaviour of the quantity 
B((x , ) )  - B((xfr)) as a function of the concentration gradient. 
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1 to 2). Increasing R obviously closes apertures in the front, with approximate widths 
AR = 2( R - Ro). We then obtain a modified front, using the same rule as above for 
discs with radius R. Correspondingly, this modified front is defined by parameters 
N,-(R), xf(R) and af (R) .  As above, using ( I ) ,  (3)  and (4) we obtain an R-dependent 
dimension Df(R) and exponents a,(R) and a N ( R )  (see figure 4). We observe a very 
abrupt decrease of Df(R) as a function of R, from Df= 1.75i0.02 for R /Ro=  1, to 
Df, = 1.35 * 0.02 for R/  Ro+ CO. The value Df, = 1.35 is in agreement with the predic- 
tion of Saleur and Duplantier [13]. Figure 4 shows that a,(R) is almost constant 
while aN( R )  has a behaviour comparable to Of( R )  as a function of R, with a limiting 
value of a N ,  = 0.20 * 0.02 for R /  Ro+ CO. 

1.3 I 1 0 . 1  
1.0 1.2 1.4 1.6 1.0 2 .o 

R / R ,  

Figure 4. Variation of exponents a J R )  (0) and a N ( R )  (a) and of the fractal dimension 
D,(R)  (U) as a function of the ratio R / R o .  a,(R) is almost constant, whereas a N ( R )  
and D,(R)  decrease very rapidly as functions of R / R o .  

The steep decrease observed for low values of R /  Ro is in qualitative agreement 
with the prediction that only two values, f and 4 should be obtained [12,13]. In 
particular, we cannot exclude here the possibility that the continuous decrease may 
be due to a finite gradient effect. Such an effect is visible on the a,(R) against R/Ro 
curve (figure 4). It is responsible for the slight decrease of a,(R) observed at small 
R/Ro.  This decrease is associated with a different behaviour of the width uf(R) at 
large and small gradients. For large gradients, a f (R)  decreases slowly as a function 
of R/Ro,  whereas for small gradients, a f (R)  follows rather a step-like function as a 
function of R/  Ro. 

One should note however, that this a f (R)  effect only slightly alters the variation 
of DXR) as a function of R/Ro. 

Valuable discussions with J-F Gouyet, M Kolb and B Sapoval are gratefully acknowl- 
edged. 
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